Evaluating CUDA Portability with DPCT and HIPCL

ZHEMING JIN (JINZ@QORNL.GOV)

Acknowledgment

The results presented were obtained using a donation from Intel.

%OAK RIDGE
Nati

ional Laboratory

Overview

« Motivation
» Evaluation flow
« Experiments

« Conclusion

%NOAK RIDGE
ati

ional Laboratory

Motivation

« Significantly more CUDA programs than OpenCL/SYCL
programs

— Acknowledge CUDA's established presence in HPC

« Port CUDA programs for Intel GPUs

— OpenCL APl is a lower-level architecture compared to the
commonly used CUDA API

— OpenCL programming is tedious and error-prone

* Evaluate tools/translators that can port CUDA codes

;I_(,OAK RIDGE
Nati

ional Laboratory

Evaluation flow

CUDA source

Intel DPC++ Compatibility Tool DPCT HIPify https://github.com/ROCm-Developer-Tools/HIPIFY
DPC++ source HIP source
Data Parallel C++ https://github.com/cpc/hipcl
N DPC+_+ HIPCL P ps//g P P
Compiler
Binary Binary
\._______,./"'__-h\“
%OAK RIDGE
National Laboratory

Experimental setup — List of kernels
 Name | Domain | #Kemels | Problemsze

b+tree Database search 2 1 million keys
backprop Pattern recognition 2 65536 keys
S8 Graph traversal 1 1 million vertices
Fluid dynamics 5 97047 elements
Linear algebra 2 4096%x4096 matrix
Medical imaging 1 104 frames
hotspot3D Physics simulation 1 512x512 poinfts
hybridsort Sorting 7 50 million numbers
- 494020 points and 34 features
Data mining 2 oer point
particlefilter Medical imaging 4 400000 points
Bioinformatics 2 2048x2048 data points
Image processing 6 512x512 data points
Linear algebra 3 8192x8192 points
i sorting 3 16M numbers
NEHEHIN Cryptography 1 10M keyspace
Linear algebra 2 16M complex numbers
Combustion simulation 27 16x16x16 grid
Unstructured grids 9 128x128x%128 grid
Physics simulation 1 32x32x32x32 sites
streamcluster Data mining 1 65536 points

OAK RIDGE https://github.com/zjin-Icf/oneAPI-DirectProgramming

National Laboratory

Experimental setup - Software/Hardware

* Intel Iris Xe Graphics (Mobile)
— 96 execution units
— Emulate double-precision floating-point operations

e Intel oneAPI Base Toolkit 2021.2.0 on Ubuntu 20.04
— DPCT converts CUDA codes
— DPC++ builds converted codes

e Build HIPCL from source (nttps://github.com/cpc/hipcl)

* Timing measured with the Intel OpenCL intercept layer

— The host timing: total elapsed time of executing OpenCL AP|
functions on a host

— The device timing: total elapsed time of executing OpenCL
APl functions on a GPU device.

— The Plugin interface is OpenCL

;I_(,NOAK RIDGE

ional Laboratory

Comparison of host and device execution time

streamcluster m device mhost

su3

miniFE
s3d

fft
md5hash
sort

lud

srad

nw
particlefilter
kmeans
hybridsort
hotspot3D
heartwall
gaussian
cfd

bfs
backprop
b+tree

»

»

|ru||||||||

o

or

(@)
»

1

n
N
N
o
w

DPCT time)
HIPCL time

OAK RIDGE ratio (

National Laboratory

Looking into the “sort” in the DPCT code

 Performance bofttleneck

— The fence space of a work-group barrier is global rather than
local

— Global fence stalls the execution of a GPU device for global
memory synchronization

— Alocal space reduces the execution time from 3.58 s t0 2.44 s
on the host, and from 3.2 s to 2.06 s on the device

;!QOAK RIDGE
Nati

ional Laboratory

Looking into the “bfs” and “b+tree” in the DPCT
code

« Performance bofttleneck
— clCreateContext: An OpenCL context is created with one or more devices.

bfs (DPCT) bfs (HIPCL)

clBuildProgram 67 ms 22% clLinkProgram 70 ms 77%

clCreateContext 183 ms 61% clEnqueveSVMMemcpy [12%

clGetPlatformID 30 ms 10% clFinish 6.7 ms 7%

b+tree (DPCT) b+tree (HIPCL)

DPCT time OpenCL API

135 ms 42% cllinkProgram

136 ms 92%

OpenCL API

clBuildProgram

clCreateContext 145 ms 45% clEnquevueSVMMemcpy ERuS 6%

clGetPlatformID 29 ms 9% clFinish 1.6 ms 1%

OAK RIDGE

National Laboratory

Double-precision floating-point emulation

« Paradox
— No double-precision operations in the “float” mode
— babelStream, fft, s3d, black-scholes ...

« Suggestion
— “-cl-single-precision-constant” is OpenCL-only

— Treat double-precision floating-point constant as single-
precision constant in the DPC++ compiler

— Tedious to cast legacy applications (e.g., s3d) that contain
hundreds of double-precision floating-point constants

¥ OAK RIDGE
National Laboratory

Related work

- MCUDA

— broaden the applicability of a previously accelerator-specific
programming model to a CPU architecture

e« Swan

— a high-level library for an application to call Swan APl which is
then mapped to the CUDA or OpenCL API

« Coriander

— a compiler and runtime for running CUDA applications on
OpenCL 1.2 devices

« CU2CL

— a source-to-source translator built upon the Clang compiler for
converting a CUDA program to an OpenCL program

;I_(,OAK RIDGE
Nati

ional Laboratory

Conclusion and Future Work

DPCT may significantly reduce porting effort

Developers may manually change DPCT programs

Comments in automatically generated DPCT codes
are useful

No tools are perfect in translating a CUDA application

Evaluate HIPCL and DPCT using more applications in
our future work

;I_(,OAK RIDGE

National Laboratory

Thanks to
The DPCT and HIPCL teams

%OAK RIDGE
Nati

onal Laboratory

