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Motivation

« Significantly more CUDA programs than OpenCL/SYCL
programs

— Acknowledge CUDA's established presence in HPC

« Port CUDA programs for Intel GPUs

— OpenCL APl is a lower-level architecture compared to the
commonly used CUDA API

— OpenCL programming is tedious and error-prone

* Evaluate tools/translators that can port CUDA codes
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Evaluation flow

CUDA source

Intel DPC++ Compatibility Tool DPCT HIPify https://github.com/ROCm-Developer-Tools/HIPIFY
DPC++ source HIP source
Data Parallel C++ https://github.com/cpc/hipcl
N DPC+_+ HIPCL P ps//g P P
Compiler
Binary Binary
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Experimental setup — List of kernels
 Name | Domain | #Kemels | Problemsze

b+tree Database search 2 1 million keys
backprop Pattern recognition 2 65536 keys
S8 Graph traversal 1 1 million vertices
Fluid dynamics 5 97047 elements
Linear algebra 2 4096%x4096 matrix
Medical imaging 1 104 frames
hotspot3D Physics simulation 1 512x512 poinfts
hybridsort Sorting 7 50 million numbers
- 494020 points and 34 features
Data mining 2 oer point
particlefilter Medical imaging 4 400000 points
Bioinformatics 2 2048x2048 data points
Image processing 6 512x512 data points
Linear algebra 3 8192x8192 points
i sorting 3 16M numbers
NEHEHIN Cryptography 1 10M keyspace
Linear algebra 2 16M complex numbers
Combustion simulation 27 16x16x16 grid
Unstructured grids 9 128x128x%128 grid
Physics simulation 1 32x32x32x32 sites
streamcluster Data mining 1 65536 points
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Experimental setup - Software/Hardware

* Intel Iris Xe Graphics (Mobile)
— 96 execution units
— Emulate double-precision floating-point operations

e Intel oneAPI Base Toolkit 2021.2.0 on Ubuntu 20.04
— DPCT converts CUDA codes
— DPC++ builds converted codes

e Build HIPCL from source (nttps://github.com/cpc/hipcl)

* Timing measured with the Intel OpenCL intercept layer

— The host timing: total elapsed time of executing OpenCL AP|
functions on a host

— The device timing: total elapsed time of executing OpenCL
APl functions on a GPU device.

— The Plugin interface is OpenCL
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Comparison of host and device execution time
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Looking into the “sort” in the DPCT code

 Performance bofttleneck

— The fence space of a work-group barrier is global rather than
local

— Global fence stalls the execution of a GPU device for global
memory synchronization

— Alocal space reduces the execution time from 3.58 s t0 2.44 s
on the host, and from 3.2 s to 2.06 s on the device

;!QOAK RIDGE
Nati

ional Laboratory




Looking into the “bfs” and “b+tree” in the DPCT
code

« Performance bofttleneck
— clCreateContext: An OpenCL context is created with one or more devices.

bfs (DPCT) bfs (HIPCL)

clBuildProgram 67 ms 22% clLinkProgram 70 ms 77%

clCreateContext 183 ms 61% clEnqueveSVMMemcpy [ 12%

clGetPlatformID 30 ms 10% clFinish 6.7 ms 7%

b+tree (DPCT) b+tree (HIPCL)

DPCT time OpenCL API

135 ms 42% cllinkProgram

136 ms 92%

OpenCL API

clBuildProgram

clCreateContext 145 ms 45% clEnquevueSVMMemcpy ERuS 6%

clGetPlatformID 29 ms 9% clFinish 1.6 ms 1%
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Double-precision floating-point emulation

« Paradox
— No double-precision operations in the “float” mode
— babelStream, fft, s3d, black-scholes ...

« Suggestion
— “-cl-single-precision-constant” is OpenCL-only

— Treat double-precision floating-point constant as single-
precision constant in the DPC++ compiler

— Tedious to cast legacy applications (e.g., s3d) that contain
hundreds of double-precision floating-point constants
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Related work

- MCUDA

— broaden the applicability of a previously accelerator-specific
programming model to a CPU architecture

e« Swan

— a high-level library for an application to call Swan APl which is
then mapped to the CUDA or OpenCL API

« Coriander

— a compiler and runtime for running CUDA applications on
OpenCL 1.2 devices

« CU2CL

— a source-to-source translator built upon the Clang compiler for
converting a CUDA program to an OpenCL program
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Conclusion and Future Work

DPCT may significantly reduce porting effort

Developers may manually change DPCT programs

Comments in automatically generated DPCT codes
are useful

No tools are perfect in translating a CUDA application

Evaluate HIPCL and DPCT using more applications in
our future work
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