
11

Evaluating CUDA Portability with DPCT and HIPCL

ZHEMING JIN (JINZ@ORNL.GOV)

Acknowledgment

The results presented were obtained using a donation from Intel.

22

Overview

• Motivation

• Evaluation flow

• Experiments

• Conclusion

33

Motivation

• Significantly more CUDA programs than OpenCL/SYCL
programs

– Acknowledge CUDA’s established presence in HPC

• Port CUDA programs for Intel GPUs

– OpenCL API is a lower-level architecture compared to the
commonly used CUDA API

– OpenCL programming is tedious and error-prone

• Evaluate tools/translators that can port CUDA codes

44

Evaluation flow

https://github.com/ROCm-Developer-Tools/HIPIFY

https://github.com/cpc/hipclData Parallel C++

Intel DPC++ Compatibility Tool

55

Experimental setup – List of kernels
Name Domain #Kernels Problem size

b+tree Database search 2 1 million keys

backprop Pattern recognition 2 65536 keys

bfs Graph traversal 1 1 million vertices

cfd Fluid dynamics 5 97047 elements

gaussian Linear algebra 2 4096×4096 matrix

heartwall Medical imaging 1 104 frames

hotspot3D Physics simulation 1 512×512 points

hybridsort Sorting 7 50 million numbers

kmeans Data mining 2
494020 points and 34 features
per point

particlefilter Medical imaging 4 400000 points

nw Bioinformatics 2 2048×2048 data points

srad Image processing 6 512×512 data points

lud Linear algebra 3 8192×8192 points

sort Sorting 3 16M numbers

md5hash Cryptography 1 10M keyspace

fft Linear algebra 2 16M complex numbers

s3d Combustion simulation 27 16×16×16 grid

miniFE Unstructured grids 9 128×128×128 grid

su3 Physics simulation 1 32×32×32×32 sites

streamcluster Data mining 1 65536 points

https://github.com/zjin-lcf/oneAPI-DirectProgramming

66

Experimental setup - Software/Hardware

• Intel Iris Xe Graphics (Mobile)

– 96 execution units

– Emulate double-precision floating-point operations

• Intel oneAPI Base Toolkit 2021.2.0 on Ubuntu 20.04

– DPCT converts CUDA codes

– DPC++ builds converted codes

• Build HIPCL from source (https://github.com/cpc/hipcl)

• Timing measured with the Intel OpenCL intercept layer

– The host timing: total elapsed time of executing OpenCL API
functions on a host

– The device timing: total elapsed time of executing OpenCL
API functions on a GPU device.

– The Plugin interface is OpenCL

77

Comparison of host and device execution time

0 0.5 1 1.5 2 2.5 3

b+tree

backprop

bfs

cfd

gaussian

heartwall

hotspot3D

hybridsort

kmeans

particlefilter

nw

srad

lud

sort

md5hash

fft

s3d

miniFE

su3

streamcluster device host

ratio (
𝐷𝑃𝐶𝑇 𝑡𝑖𝑚𝑒

𝐻𝐼𝑃𝐶𝐿 𝑡𝑖𝑚𝑒
)

88

Looking into the “sort” in the DPCT code

• Performance bottleneck

– The fence space of a work-group barrier is global rather than
local

– Global fence stalls the execution of a GPU device for global
memory synchronization

– A local space reduces the execution time from 3.58 s to 2.44 s
on the host, and from 3.2 s to 2.06 s on the device

99

Looking into the “bfs” and “b+tree” in the DPCT
code

• Performance bottleneck

– clCreateContext: An OpenCL context is created with one or more devices.

OpenCL API DPCT time Percentage

clBuildProgram 67 ms 22%

clCreateContext 183 ms 61%

clGetPlatformID 30 ms 10%

OpenCL API HIPCL time Percentage

clLinkProgram 70 ms 77%

clEnqueueSVMMemcpy 10 ms 12%

clFinish 6.7 ms 7%

OpenCL API HIPCL time Percentage

clLinkProgram 136 ms 92%

clEnqueueSVMMemcpy 9 ms 6%

clFinish 1.6 ms 1%

OpenCL API DPCT time Percentage

clBuildProgram 135 ms 42%

clCreateContext 145 ms 45%

clGetPlatformID 29 ms 9%

bfs (DPCT) bfs (HIPCL)

b+tree (DPCT) b+tree (HIPCL)

1010

Double-precision floating-point emulation

• Paradox

– No double-precision operations in the “float” mode

– babelStream, fft, s3d, black-scholes …

• Suggestion

– “-cl-single-precision-constant” is OpenCL-only

– Treat double-precision floating-point constant as single-
precision constant in the DPC++ compiler

– Tedious to cast legacy applications (e.g., s3d) that contain
hundreds of double-precision floating-point constants

1111

Related work

• MCUDA

– broaden the applicability of a previously accelerator-specific
programming model to a CPU architecture

• Swan

– a high-level library for an application to call Swan API which is
then mapped to the CUDA or OpenCL API

• Coriander

– a compiler and runtime for running CUDA applications on
OpenCL 1.2 devices

• CU2CL

– a source-to-source translator built upon the Clang compiler for
converting a CUDA program to an OpenCL program

1212

Conclusion and Future Work

• DPCT may significantly reduce porting effort

• Developers may manually change DPCT programs

• Comments in automatically generated DPCT codes
are useful

• No tools are perfect in translating a CUDA application

• Evaluate HIPCL and DPCT using more applications in
our future work

1313

Thanks to

The DPCT and HIPCL teams

