oneAPI is a cross-industry, open, standards-based unified programming model that delivers a common developer experience across accelerator architectures—for faster application performance, more productivity, and greater innovation. The oneAPI industry initiative encourages collaboration on the oneAPI specification and compatible oneAPI implementations across the ecosystem.

Code Together is a podcast interview series that explores challenges at the forefront of cross-architecture development, sponsored by Intel. Listen now

The oneAPI Specification

The oneAPI specification extends existing developer programming models to enable a diverse set of hardware through language, a set of library APIs, and a low level hardware interface to support cross-architecture programming. To promote compatibility and enable developer productivity and innovation, the oneAPI specification builds upon industry standards and provides an open, cross-platform developer stack.

The Language

At the core of the oneAPI specification is DPC++, an open, cross-architecture language built upon the ISO C++ and Khronos SYCL standards. DPC++ extends these standards and provides explicit parallel constructs and offload interfaces to support a broad range of computing architectures and processors, including CPUs and accelerator architectures. Other languages and programming models can be supported on the oneAPI platform via the Accelerator Interface.

The Libraries

oneAPI provides libraries for compute and data intensive domains. They include deep learning, scientific computing, video analytics, and media processing.

The Hardware Abstraction Layer

The low-level hardware interface defines a set of capabilities and services that allow a language runtime to utilize a hardware accelerator.

Optimized Applications
Optimized Middleware & Frameworks
oneAPI Industry Specification
Direct Programming
API-based Programming
Host Interface
Accelerator Interface
Specialized Accelerators

Get Involved

  • Provide feedback on the oneAPI specification.
  • Create implementations for new compute architectures.
  • Suggest future directions for oneAPI and include oneAPI in upcoming research.

Provide Feedback